Entropy, Maximum Entropy Priciple and Quantum Statistical Information for Various Random Matrix Ensembles

نویسنده

  • Maciej M. Duras
چکیده

The random matrix ensembles (RME) of quantum statistical Hamiltonians, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), are applied in literature to following quantum statistical systems: molecular systems, nuclear systems, disordered materials, random Ising spin systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integrability with respect to eigenergies of quantum systems are defined and calculated. Quantum statistical information functional is defined as negentropy (opposite of entropy or minus entropy). Entropy is neginformation (opposite of information or minus information. The distribution functions for the random matrix ensembles are derived from the maximum entropy principle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Statistical Information, Entropy, Maximum Entropy Principle in Various Quantum Random Matrix Ensembles

Random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), found applications in literature in study of following quantum statistical systems: molecular systems, nuclear systems, disordered materials, random Ising spin systems, quantum chaotic systems, and two-dimensional electron sy...

متن کامل

1 5 Fe b 20 05 Fluctuations of Quantum Statistical Two - Dimensional Systems of Electrons

1 Abstract The random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Gini-bre RME), are applied to following quantum statistical systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integr...

متن کامل

”Non-Equilibrium Statistical Physics in Low Dimensions and

The random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), are applied to following quantum statistical systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integrability with...

متن کامل

Quantum Fluctuations of Systems of Interacting Electrons in Two Spatial Dimensions

1 Abstract The random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Gini-bre RME), are applied to following quantum statistical systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integr...

متن کامل

Quantum information and entropy in random matrix ensembles

The random matrix ensembles (RME), especially Gaussian random matrix ensembles GRME and Ginibre random matrix ensembles, are applied to following quantum systems: nuclear systems, molecular systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Measures of quantum chaos and quantum integrability with respect to eigenergies of quantum systems are defined and calculat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003